UNCLASSIFIED AD 263266 ## **DEFENSE** DOCUMENTATION CENTER **FOR** SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA, VIRGINIA UNCLASSIFIED # DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. JULY 1961 R&PORT ESL-R-115 M. & T. PROJECT DSR 7848 Centract AF-33(616)-5489 Task 50688 # AN EXPERIMENTAL INVESTIGATION of NOISE in TUNNEL DIODES Carl N. Berglund . 1. mi. Systems Lahoratory Rudai Research Group 139 ACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE 39, MASSACHUSETTS annual of Electrical Engineering The Servomechanisms Research Laboratory of the Electrical Engineering Department, Massachusetts Institute of Technology, announces a change in its name to ELECTRONIC SYSTEMS LABORATORY. This new name reflects the importance of systems concepts in modern engineering, and the interrelationship in many complex systems among control technology, data processing, and electronic measuring devices and systems. The Electronic Systems Laboratory is currently engaged in research in computer technology and applications, control technology, electronic measuring systems, and related devices and components. ### AN EXPERIMENTAL INVESTIGATION OF NOISE IN TUNNEL DIODES by Carl N. Berglund The research reported in this document was made possible through the support extended the Massachusetts Institute of Technology, Electronic Systems Laboratory, by the United States Air Force (Navigation and Guidance Laboratory, Aeronautical Systems Division) under Contract AF-33(616)-5489, Task 50688, M.I.T. Project DSR 7848. It is published for technical information only and does not represent recommendations or conclusions of the sponsoring agency. Radar Research Group Electronic Systems Laboratory Department of Electrical Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts #### NOTICES Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the: ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA Department of Defense contractors must be established for ASTIA services or have their "need-to-know" certified by the cognizant military agency of their project or contract. #### ABSTRACT Noise measurements were made on one silicon and three germanium commercially available tunnel diodes over a bias range from zero voltage to a voltage slightly beyond the valley point, and at three temperatures -- 203 K, 290 K, and 373 K. The study was divided into two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise. Frequency-dependent noise was measured in the range 1 kc to 500 kc, and was found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.46 to 1.2. This component of noise appears to be caused by two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room remperature. It was found that the equivalent shot-noise current of a tunnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. #### ACKNOWLEDGMENT This report is based on a thesis submitted by Carl N. Berglund in September 1961 in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the Massachusetts Institute of Technology. The author wishes to express his appreciation to the staff of the Electronic Systems Laboratory, particularly Mr. Godfrey T. Coate for his supervision of this work and for his valuable suggestions and criticisms. #### TABLE OF CONTENTS | CHAPTER | Ι | INTRODUCTION AND SUMMARY OF RESULTS | age | 1 | |--------------|----|--|-----|--------| | | A. | OBJECT OF THE STUDY | | 1 | | | В. | MEASURED NOISE IN SOME TUNNEL DIODES | | 1 | | | | Frequency-Dependent Noise Frequency-Independent Noise | | 1
5 | | CHAPTER | II | MEASUREMENT PROCEDURE | | 7 | | | Α. | LOW-FREQUENCY NOISE MEASUREMENTS | | 7 | | | B. | HIGH-FREQUENCY NOISE MEASUREMENTS | | 10 | | | C. | DISCUSSION OF ERRORS | | 11 | | CHAPTER III | | DISCUSSION OF RESULTS | | 13 | | | A. | TUNNEL-DIODE CURRENT MECHANISMS | | 13 | | | B. | 1/f NOISE IN TUNNEL DIODES | | 14 | | | C. | SHOT NOISE IN TUNNEL DIODES | | 28 | | BIBLIOGRAPHY | | | | 33 | #### LIST OF FIGURES | 1 | Characteristics at 290 K of 2.2-ma Ge Tunnel Diode Type 1N2969 (No. 1) page | 2 | |----|---|----| | 2 | l-kc Noise vs. Forward Current in Five Tunnel-Diode Samples at 290 K | 4 | | 3 | Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for 1-ma Ge Tunnel Diode Type 1N2939 | 6 | | 4 | Circuit for Low-Frequency Noise Measurements | 7 | | 5 | Noise Equivalent Circuit at Input of Video Amplifier with Tunnel Diode Connected | 8 | | 6 | Noise Equivalent Circuit at Input of Video Amplifier with Tunnel Diode Removed | 8 | | 7 | Circuit for 30-Mc Noise Measurements | 11 | | 8 | Typical Tunnel-Diode V-I Characteristics | 13 | | 9 | Low-Frequency Noise vs. Frequency for 1-ma Si Tunnel Diode Type 1N2929 | 16 | | 10 | Low-Frequency Noise vs. Bias Voltage for 1-ma Si Tunnel Diode Type 1N2929 | 17 | | 11 | Low-Frequency Noise vs. Frequency for l-ma Ge Tunnel Diode Type 1N2939 | 18 | | 12 | Low-Frequency Noise \underline{vs} . Bias Voltage for 1-ma Ge Tunnel Diode Type 1N2939 | 19 | | 13 | Low-Frequency Noise vs. Frequency for 4.7-ma Ge Tunnel Diode Type 1N2941 | 20 | | 14 | Low-Frequency Noise vs. Bias Voltage for 4.7-ma Ge Tunnel Diode Type 1N2941 | 21 | | 15 | Low-Frequency Noise vs. Frequency for 2.2-ma Ge Tunnel Diode Type 1N2969 (No. 1) | 22 | | 16 | Low-Frequency Noise vs. Bias Voltage for 2.2-ma Ge Tunnel Diode Type 1N2969 (No. 1) | 23 | | 17 | Low-Frequency Noise at 290 K for 2.2-ma Ge Tunnel Diode Type 1N2969 (No.2) | 24 | | 18 | l-kc Noise in Tunnel-Diode Samples vs. Forward Current | 25 | | | | | #### LIST OF FIGURES (continued) | 19 | D-c Characteristics of Si Tunnel Diode Type 1N2929 at 203 K, 290 K, and 373 K page | 26 | |----|--|----| | 20 | D-c Characteristics of Ge Tunnel Diode Type 1N2939 at 203 K, 290 K, and 373 K | 26 | | 21 | D-c Characteristics of Ge Tunnel Diode Type 1N2941 at 203 K, 290 K, and 373 K | 27 | | 22 | D-c Characteristics of Ge Tunnel Diode Type 1N2969 (No. 1) at 203 K, 290 K, and 373 K | 27 | | 23 | Comparison of Calculated and Measured Equivalent Shot-Noise
Current at 30 Mc and 290 K for Si Tunnel Diode Type 1N2929 | 30 | | 24 | Comparison of Calculated and Measured Equivalent Shot-Noise
Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1N2939 | 30 | | 25 | Comparison of Calculated and Measured Equivalent Shot-Noise
Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1N2941 | 31 | | 26 | Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1N2969 (No. 1) | 31 | #### CHAPTER I #### INTRODUCTION AND SUMMARY OF RESULTS #### A. OBJECT OF THE STUDY In order to determine whether the tunnel diode will be useful in lownoise preamplifiers, frequency converters and mixers, more complete information than is available in the literature is required on the noise sources present in the device. The object of the present work is to measure the intensity of the equivalent shunt noise-current generator for a number of commercially available tunnel diodes over a wide range of bias, frequency, and temperature, and to interpret the results in terms of noise sources present in the diodes. #### B. MEASURED NOISE IN SOME TUNNEL DIODES Measurements were made on four tunnel diodes: one Hoffman silicon tunnel diode, Type 1N2929, of 1-ma peak current, and three General Electric germanium tunnel diodes, Types 1N2939, 1N2969, and 1N2941, of 1-, 2.2-, and 4.7-ma peak currents, respectively. These four were chosen in an effort to obtain a reasonable sample of commercially available tunnel diodes. The measurements were made at three temperatures, 203 K, 290 K, and 373 K, and covered a frequency range from 1 kc to 500 kc. Noise was also measured at 30 Mc at room temperature. The bias range of interest extended from zero voltage to voltages slightly beyond the valley voltage. The more important results of the study are as follows. #### 1. Frequency-Dependent Noise At low frequencies, considerable 1/f noise was found to be present in all four diodes. Figure 1a shows the d-c characteristic and Figs. 1b
and 1c illustrate the magnitude of the noise measured in the 2.2-ma Fig. 1 Characteristics at 290 K of 2.2 - ma Ge Tunnel Diode Type 1 N2969 (No. 1) germanium sample at room temperature, 290 K. The equivalent shot-noise current $I_{\rm eq}$ represents the direct current in an emission-saturated diode generating a shot noise current equal to the observed noise current, where $I_{\rm eq}$ is defined by the equation $$\frac{\overline{i_d^2}}{i_d} = 2 q I_{eq} \Delta f$$ (1) In eq. 1, i_d^2 is the mean-square noise-current generator in shunt with the tunnel diode at the frequency, temperature, and bias of the measurement, q is the electronic charge, and Δf is the bandwidth of the noise measured. From Fig. 1b it can be seen that low-frequency noise in tunnel diodes increases rapidly with increasing bias voltages, and Fig. 1c indicates that the noise varies roughly in proportion to 1/f. At the higher bias voltages, the noise may be so large that a frequency dependent component may be present that is greater than the normal shot-noise component to frequencies as high as 50 Mc. Figure 2 shows 1-kc noise in all four diodes, and also in a second sample of the 2.2-ma diode Type 1N2969, as a function of forward current, and suggests that no general statements can be made about the magnitude of low-frequency noise to be expected from a diode of given peak-current rating. In addition, the noise does not vary directly as the square of the forward current, indicating that more than one source is responsible for the observed noise. The approximate 1/f frequency variation indicated in Fig. 1c is not characteristic of all the diodes. However, at a particular bias voltage, the low-frequency noise in all samples was found to vary nearly inversely as the frequency to some power x. The value of x varies over a considerable range with bias voltage and temperature. Values as low as 0.46 and as high as 1.2 were noted. In the work of Yajima and Esaki, 1 it was suggested that two low-frequency noise-current generators were present in the tunnel diode, one proportional to the square of the normal diode current component, and one Superscripts refer to numbered items in the Bibliography. Fig. 2 1-kc Noise <u>vs.</u> Forward Current in Five Tunnel-Diode Samples at 290 K ţ proportional to the square of the "excess" current component. The results of the present study suggest that this statement may be an oversimplification. The variation of the factor x as described above, and the variation of the 1/f noise with bias in the excess-current region indicate that two or more separate components of the excess current, as well as the diode current component, contribute to the observed noise. This observation in turn suggests that the excess current itself may be caused by more than one physical phenomen #### 2. Frequency-Independent Noise At high frequencies, the 1/f noise becomes negligible and the predominant noise-current source in tunnel diodes is the shot effect. Measurements by Tiemann² have shown that at high frequencies and in the negative-resistance region tunnel diodes produce full shot noise; that is, I_{eq} is equal to the direct current at the bias point. It is supposed that this result can be extended to other bias regions if the negative Zener current I_Z is separated from the positive Esaki, excess, and diode current components, I_E , I_{ex} , and I_d respectively. Thus, if $$I_{dc} = I_E + I_{ex} + I_{d} - I_Z$$ (2) is the diode direct current, it is supposed that $$I_{eq} = I_E + I_{ex} + I_d + I_Z$$ (3) Measurements made at 30 Mc and 290 K indicate that, for all four tunnel-diode samples, Eq. 3 is an excellent approximation. An example of the agreement obtained is shown by data for the 1-ma germanium diode, Type 1N2939, plotted in Fig. 3. The small circles represent experimental values of I_{eq} and the solid line is a plot of Eq. 3 obtained from the direct current values and values of I_{Z} calculated by a method given by Pucel. The dashed line representing I_{dc} is added for comparison. Fig. 3 Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for 1-ma Ge Tunnel Diode Type 1 N2939 A description of the method is given in Chapter III. #### CHAPTER II #### MEASUREMENT PROCEDURE #### A. LOW-FREQUENCY NOISE MEASUREMENTS The equivalent noise-current generator in shunt with a tunnel diode can be determined indirectly by connecting the diode as a low-gain amplifier and measuring its noise figure. The circuit diagram for noise measurements between 1 kc and 500 kc is shown in Fig. 4. The experimental procedure is as follows: With the tunnel diode connected as shown, and the conductance G set at some convenient value G_1 which prevents the circuit from oscillating, note the voltage V_1 indicated on the true-rms voltmeter. Connect the signal generator to the circuit, Fig. 4 Circuit for Low-Frequency Noise Measurements and set its output to some convenient value well above the noise. Remove the tunnel diode and adjust the conductance G to some value G_2 for which the voltmeter reading is the same as it was before. This procedure assures that the impedance seen by the amplifier at its input is the same as it was for the first measurement. With the signal generator disconnected, note the voltage V_2 of the voltmeter and measure the noise figure, F_2 , of the circuit. The internal conductance of the noise generator is $\,G_0\,$ for both measurements. From the two measurements, the equivalent noise generator i_d^2 in parallel with the tunnel diode in a narrow bandwidth Δf at the frequency, temperature, and bias of the measurement can be calculated. Figures 5 and 6 are the equivalent circuits of the amplifier input for the first and second measurements respectively. In the figures, G_d is the small-signal conductance Fig. 5 Noise Equivalent Circuit at Input of Video Amplifier with Tunnel Diode Connected Fig. 6 Noise Equivalent Circuit at Input of Video Amplifier with Tunnel Diode Removed of the tunnel diode at the bias voltage of the measurement, G_{in} is the input conductance of the amplifier, and $\stackrel{\cdot}{i_{G_0}}$, $\stackrel{\cdot}{i_{G_1}}$, and $\stackrel{\cdot}{i_{G_2}}$ are the meansquare thermal-noise currents associated with the conductances G_0 , G_1 , and G_2 respectively. Thus $$\overline{i_{G_0}^2} = 4 kT \Delta f G_0$$ (4) $$\overline{i_{G_1}^2} = 4 kT \Delta f G_1 \qquad (5)$$ $$\overline{i_{G_2}^2} = 4 kT \Delta f G_2 \tag{6}$$ where k is Boltzmann's constant, and T is the absolute temperature of the conductances (290 K for all measurements). The amplifier noise is represented by an equivalent noise-current generator at its input terminals of mean-square value $i_{\rm ex}^2$. For the first measurement, $$V_1^2 = (i_d^2 + i_{G_0}^2 + i_{G_1}^2 + i_{ex}^2) C_1$$ (7) where C_1 is some constant dependent on the amplifier gain and the total admittance at the amplifier's input. For the second measurement $$V_2^2 = (i_{G_2}^2 + i_{G_0}^2 + i_{ex}^2) C_1$$ (8) $$F_{2} = \frac{\vec{i}_{G_{2}}^{2} + \vec{i}_{G_{0}}^{2} + \vec{i}_{ex}^{2}}{\vec{i}_{G_{0}}^{2}}$$ (9) and the values of C_1 and i_{ex}^2 are unaltered because the method of setting G_2 assures that the total input admittance is not changed. From Eqs. 7 and 8, $$\frac{\overline{i_d^2} + \overline{i_{G_0}^2} + \overline{i_{G_1}^2} + \overline{i_{ex}^2} = \left(\frac{\overline{V_1}}{\overline{V_2}}\right)^2 \left(\overline{i_{G_2}^2} + \overline{i_{G_0}^2} + \overline{i_{ex}^2}\right) \tag{10}$$ Substituting Eqs. 4, 5, 6, and 9 into Eq. 10 yields $$\overline{i_{d}^{2}} = 4 \text{ kT } \triangle f G_{0} \left\{ \left[\left(\frac{V_{1}}{V_{2}} \right)^{2} - 1 \right] F_{2} + \frac{G_{2}}{G_{0}} - \frac{G_{1}}{G_{0}} \right\}$$ (11) If I is defined as the equivalent shot-noise current of the tunnel diode given by $$\frac{1}{i_d^2} = 2 q I_{eq} \Delta f$$ (12) Equation 11 becomes $$I_{eq} = \frac{2 \text{ kT } G_0}{q} \left\{ \left[\left(\frac{V_1}{V_2} \right)^2 - 1 \right] F_2 + \frac{G_2}{G_0} - \frac{G_1}{G_0} \right\}$$ $$\approx 50 \text{ G}_0 \left\{ \left[\left(\frac{\text{V}_1}{\text{V}_2} \right)^2 - 1 \right] \text{ F}_2 + \frac{\text{G}_2}{\text{G}_0} - \frac{\text{G}_1}{\text{G}_0} \right\} \text{ ma} \quad (13)$$ Equation 13 holds regardless of the tunnel-diode temperature. Measurements were made at dry-ice temperature, 203 K, room temperature, 290 K, and 373 K. To maintain the diodes at dry-ice temperature, the samples and their mount were placed with some dry ice in a flask of alcohol. A temperature-controlled oven was used for noise measurements of the samples at 373 K. The oscillation-damping mount used for the tunnel diodes was taken from a Texas Instruments Model 530 Tunnel Diode Curve Tracer. It consists of a series resistance and capacitance placed directly across the tunnel diode terminals. The value of the capacitance is such that even at the highest frequency of measurement, 500 kc, its impedance is high enough to make the effect of the mount on the noise measurements negligible. #### B. HIGH-FREQUENCY NOISE MEASUREMENTS The equivalent noise-current generator in shunt with the tunnel diodes was measured at 30 Mc by a similar method to that used at low frequencies. The circuit diagram is shown in Fig. 7. Fig. 7 Circuit for 30-Mc Noise Measurements The procedure of measurement at 30 Mc is the same as that at low frequencies, except that the tuned circuit must be retuned before each measurement to correct for the effect of tunnel-diode capacitance. The equivalent shot-noise current is again given by Eq. 13. Measurements were made only at room temperature because oscillation of the tunnel-diode circuit was caused by the long connecting cable required between the noise-measuring equipment and the temperature-controlling equipment. The oscillation-damping network shown in Fig. 7 consists of a series resistance of 22 ohms and a variable capacitor
of 7 to 45 mmf placed directly across the diode terminals. The method of calculating the values required was that of Davidsohn et al. The value of capacitance must be such that the noise contribution to the circuit of the 22-ohm resistor is negligible with respect to that of the diode at 30 Mc. For this reason, a much smaller value of capacitance than that used for the low-frequency measurements was required. This resulted in insufficient damping when long connecting cables were used, and the diodes oscillated. #### C. DISCUSSION OF ERRORS The method of noise measurement employed has the advantage of tending to reduce the effect of inaccuracies in some of the measuring equipment. Consider Eq. 13 rewritten in a slightly different manner. $$I_{eq} = 50 \left[\left(\frac{V_1}{V_2} \right)^2 - 1 \right] F_2 G_0 + 50 G_2 - 50 G_1 ma.$$ (14) The accuracy of $I_{\rm eq}$ is to a large part determined by the accuracy of the factor $(V_1/V_2)^2$ -1. The ratio V_1/V_2 may be more accurate than either V_1 or V_2 taken alone if some of the error in V_1 appears proportionally in V_2 . For best accuracy, the ratio V_1/V_2 must be much greater than unity. But V_1/V_2 can be large only if the product G_0F_2 is small. Thus, an amplifier with as low a noise figure as possible and a value of G_0 as small as possible (consistent with low over-all noise figure) should be used. The value of I_{eq} can also be determined by measuring the over-all system noise figure F_1 instead of V_1 in the first step of the measurement. The equivalent noise current I_{eq} is then given by $$I_{eq} = 50 G_0 \left[F_1 - F_2 + \frac{G_2}{G_0} - \frac{G_1}{G_0} \right] \text{ ma}$$ (15) However, the many more operations associated with measuring \mathbf{F}_1 and \mathbf{F}_2 rather than V_1 , V_2 , and \mathbf{F}_2 makes this method more time consuming. Also, the upper limit on \mathbf{F}_1 of 20 db set by the noise generator restricts the range of \mathbf{I}_{eq} , and the fact that the true-rms voltmeter is more accurately calibrated than the noise generator makes the error of the measurement associated with Eq. 14 smaller than that of the measurement associated with Eq. 15. Any small stray reactance present in the circuit, if it is the same for the measurement of V_1 as for that of V_2 , will appear chiefly in the value of C_1 in Eqs. 7 and 8. Thus, its effect on the accuracy of I_{eq} is minimized. #### CHAPTER III #### DISCUSSION OF RESULTS #### A. TUNNEL-DIODE CURRENT MECHANISMS Figure 8 shows a typical current-voltage characteristic of a tunnel diode. A knowledge of the carrier-transport phenomena that combine to form the observed characteristic is required if the experimental noise data are to be interpreted in terms of noise sources within the device. In the large-forward-voltage range, the observed curve is due to electron and hole diffusion in the forward direction, and drift currents in the reverse direction. This component of current, I_d , can be determined by accurately measuring current and voltage in the tunnel diode at high forward voltage, and applying the usual diode current-voltage relation I_d $$I_{d} = I_{s} \left[e^{qV/kT} - 1 \right]$$ (16) where q is the electronic charge, k is Boltzmann's constant, T is the absolute temperature, I_s is a constant, and V is the barrier voltage. The voltage drop in the diode spreading resistance must be subtracted from the measured voltage to obtain V. Fig. 8 Typical Tunnel-Diode V-I Characteristics Large current in the reverse direction and a current peak in the forward direction can be attributed to the forward-directed Esaki current I_E and the reverse-directed Zener current I_Z . The magnitudes of these two currents have not been accurately predicted by present theory. However, between zero voltage and the voltage at the peak current, the two components can be calculated from the observed d-c characteristic quite closely by using a method suggested by Pucel. It is the observed current, then the Esaki and Zener current components at some voltage V are given by $$I_{E} = \frac{I}{1 - e^{-qV/kT}}$$ (17) $$I_{Z} = \frac{I}{e^{qV/kT}-1}$$ (18) This method is not applicable at bias voltages above approximately the peakpoint voltage because the current then contains components in addition to $I_{\rm E}$ and $I_{\rm Z}$. If a parabolic band structure is assumed for the tunnel diode, $I_{\rm E}$ and $I_{\rm Z}$ can be predicted, but a d-c characteristic obtained using these values does not agree with observed values of total current. The difference between the observed current and the algebraic sum of the calculated Esaki, Zener and diode current components has been called the excess current, $I_{\rm ex}$, and is generally believed to be due to carrier tunneling to intermediate states followed by recombination. This excess-current component, along with the diode component, are thought to be almost entirely responsible for 1/f noise in the device. $I_{\rm current}$ #### B. 1/f NOISE IN TUNNEL DIODES In 1958, as a method of learning more about the excess-current region of the tunnel-diode current-voltage characteristic, an experimental study of excess noise in the device was made by Yajima and Esaki. It was found that a 1/f noise spectrum existed which appeared to be proportional to the excess current. Figures 9 through 18 show the noise observed in the tunnel diode samples at low frequencies. Figures 9 through 16 are plots of observed noise versus frequency and observed noise versus bias voltage for each of the Type 1N2929, 1N2939, 1N9241, and 1N2969 samples at temperatures of 203 K, 290 K, and 373 K. Figure 17 shows the variation of observed noise with frequency and bias voltage for a second sample of the Type 1N2969 2.2-ma tunnel diode at room temperature. Figure 18 shows the variation of observed 1-kc noise with forward current for each of the four samples at the three temperatures 203 K, 290 K, and 373 K. The d-c characteristics for the four samples at the three temperatures are given by Figs. 19, 20, 21, and 22. Yajima assumed that there are two 1/f noise-current generators present in tunnel diodes, one proportional to the square of the diode-current component and one proportional to the square of the excess-current component. On this assumption, the following approximate equation can be written $$I_{eq} = \frac{K_1 I_d^2}{f} + \frac{K_2 I_{ex}^2}{f}$$ (19) where K_1 and K_2 are constants, and f is the frequency of the noise. An attempt to fit Eq. 19 to the measured data yields widely different values of K_1 and K_2 for the different diodes. In fact, variation of K_1 and K_2 is needed even from region to region of a single diode. However, it can be said in general that K_2 is much greater than K_1 . The magnitude of the excess noise at any particular bias point was found to be nearly inversely proportional to its frequency to some power x. The value of x varied from 0.46 to 1.2, and was in general large at the higher bias voltages. These observations seem to suggest that Eq. 19 is not correct. Instead, it seems reasonable to suppose that the excess current is made up of a number of components which produce excess noise inversely proportional to different powers of frequency and at different intensities. Since the Fig. 9 Low-Frequency Noise vs. Frequency for 1-ma Si Tunnel Diode Type 1 N2929 Fig. 10 Low-Frequency Noise vs. Bias Voltage for 1-ma Si Tunnel Diode Type 1N2929 Fig. 11 Low-Frequency Noise vs. Frequency for 1-ma Ge Tunnel Diode Type 1 N2939 Fig. 12 Low-Frequency Noise vs. Bias Voltage for 1-ma Ge Tunnel Diode Type 1N2939 Fig. 13 Low-Frequency Noise vs. Frequency for 4.7-ma Ge Tunnel Diode Type 1N2941 Fig. 14 Low-Frequency Noise vs. Bias Voltage for 4.7-ma Ge Tunnel Diode Type 1 N2941 Fig. 15 Low-Frequency Noise vs. Frequency for 2.2-ma Ge Tunnel Diode Type 1 N2969 (No. 1) Fig. 16 Low-Frequency Noise vs. Bias Voltage for 2.2-ma Ge Tunnel Diode Type 1 N2969 (No. 1) のはない ないかい かんしん いっちゅうしゃくしん Fig. 17 Low - Frequency Noise at 290 K for 2.2 - ma Ge Tunnel Diode Type 1 N2969 (No. 2) Fig. 18 1-kc Noise in Tunnel-Diode Samples vs. Forward Current Fig. 19 D-c Characteristics of Si Tunnel Diode Type 1 N2929 at 203 K, 290 K, and 373 K Fig. 20 D-c Characteristics of Ge Tunnel Diode Type 1 N2939 at 203 K, 290 K, and 373 K Fig. 21 D-c Characteristics of Ge Tunnel Diode Type 1N2941 at 203 K, 290 K, and 373 K Fig. 22 D-c Characteristics of Ge Tunnel Diode Type 1 N2969 (No. 1) at 203 K, 290 K, and 373 K magnitude of the excess current is known to be relatively independent of temperature, ¹ it seems necessary to assume that the noise associated with the different components of excess current are temperature dependent in different ways. In general, the following statements can be made about excess noise in tunnel diodes: - 1. 1/f noise is greatest for most tunnel diodes at the higher bias voltages. - 2. At bias voltages near the valley voltage and higher, the 1/f noise may predominate at frequencies as high as 50 Mc. Measurements by Van der Ziel⁵ indicated that there are irregularities at low frequencies in the noise spectra—of some tunnel diodes. No such irregularities were noted for the four samples studied. ## C. SHOT NOISE IN TUNNEL DIODES Measurements were made of the equivalent noise-current generator in parallel with four tunnel-diode samples at 30 Mc and 290 K. It was assumed that all noise measured at this frequency was frequency independent, and that the thermal noise due to the spreading resistance of the diode was negligible compared to the shot noise over the bias range of interest. The latter assumption is valid at frequencies well below the resistive cut-off frequency of the tunnel diode as long as the ratio of minimum negative resistance to spreading resistance is much greater than one. For the Type 1N2941 4.7-ma diode, this ratio is 55:1, so that the error introduced by this assumption is less than two
percent. For the other diodes, the error is considerably less. The current components I_E and I_Z were calculated for each diode by Pucel's method, and, following Tiemann, 2 it was assumed that the equivalent shot-noise current of the diode should be given by Eq. 3. Figures 23 through 26 show the measured shot-noise equivalent current for the four samples compared to the value of I_{eq} obtained from Eq. 3, the sum of I_E , I_Z , I_{ex} , and I_d . For all diodes, the measured shot-noise equivalent current agrees very closely with Eq. 3. Such small differences as exist could be caused by the following: - 1. Some 1/f noise may be present. - 2. At higher bias voltages, the larger junction capacitance makes accurate measurement of noise difficult. The high measured values of $I_{\rm eq}$ at the highest bias voltages may thus be in error. - 3. In the positive-resistance regions, the increased value of F_2 tends to decrease the accuracy of the measurements. Fig. 23 Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for Si Tunnel Diode Type 1 N2929 Fig. 24 Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1 N2939 Fig. 25 Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1 N2941 Fig. 26 Comparison of Calculated and Measured Equivalent Shot-Noise Current at 30 Mc and 290 K for Ge Tunnel Diode Type 1 N2969 (No. 1) ## **BIBLIOGRAPHY** - 1. Yajima, Tatsuo; and Esaki, L., "Excess Noise in Narrow Germanium p-n Junctions," Journal of the Phys. Soc. of Japan, Vol. 13, No. 11, (November, 1958), pp. 1281-1287. - 2. Tiemann, J.J., "Shot Noise in Tunnel Diode Amplifiers," Proc. I.R.E., Vol. 48, No. 8 (August, 1960), pp. 1418-1423. - 3. Pucel, R.A., "The Equivalent Noise Current of Esaki Diodes," Proc. I.R.E., Vol. 49, No. 6 (June, 1961), pp. 1080-1081. - 4. Davidsohn, U.S.; Hwang, Y.C.; and Ober, G.B., "Designing with Tunnel Diodes-Part I," Electronic Design, (February 3, 1960) pp. 50-55. - 5. Van der Ziel, A., Noise in Semiconductors and Semiconductor Devices, University of Minnesota Progress Report, Electrical Engineering Dept., (June, 1960), pp. 83-85. #### DISTRIBUTION LIST #### Contract AF33(616)-5489 DSR 7848 10/60 # GOVERNMENT AND MILITARY Commander Air Research and Development Command Andrews Air Force Base Washington 25, D.C. ATTN: RDTC Director Air University Library Maxwell Air Force Base Alabama Director of Research and Development Headquarters, USAF ATTN: AFDRD-SC-3 Washington 25, D.C. Commander Air Force Cambridge Research Center ATTN: Electronic Research Library 230 Albany Street Cambridge 39, Massachusetts Commander Rome Air Development Center ATTN: Research Library Griffies Air Force Base New York Commander Aeronautical Systems Division Wright-Patterson Air Force Base Dayton, Ohio Attn: ASAD - Library ASAT ASDSB ASRCP ASRNR ASRNET-3 ASRNGE-I (3 cc., I repro.) Armed Services Technical Information Agency ATTN: TICSC {10 cys} Arliagton Hall Station Arliagton 12, Virginia Commanding Officer U.S. Army Signal Research and Development Laboratory ATTN: SIG-EL-RDR Fort Monmouth, New Jersey Office of the Chief Signal Officer Department of the Army ATTN: Eng. and Tech. Div. Washington 25, D.C. Chief, Bureau of Aeronautics. Department of the Navy ATTN: Electronics Division Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Code 816 Washington 25, D. C. Director, Naval Research Laboratories ATTN: Code 2021 Washington 25, D.C. Chief, Bureau of Aeronautics Central District ATTN: Electronics Division Wright-Patterson Air Force Base Onio Commanding Officer U.S. Navy Electronics Laboratory San Diego 52, California Commanding Officer Office of Naval Research 346 Broadway New York 13, New York Assistant Secretary of Defense Research and Development Board Department of Defense Washington 25, D. C. Secretary, Committee on Electronice Office of Asst. Secretary of Defense Department of Defense Washington 25, D. C. INDUSTRIAL Airborne Instruments Laberatory A Division of Cutler-Hammer, Inc. Walt Whitman Road Melville, Long Island, New York Batelle Memorial Institute Solid State Devices Div. ATTN: Mr. E. H. Layer 505 King Avenue Columbus 1, Ohio Bell Aircraft Corporation P. O. Box I Buffalo, New York Bell Telephone Lab. Electronics Research Dept. Murray Hill Lab. Murray Hill, New Jersey Bell Telephone Laboratories Attn: C.W. Hoover Whippany, New Jersey Bosing Aircraft Corporation Seattle, Washington Convair Division General Dynamics Corporation Pamona, Galifornia Convair Division General Dynamics Corporation 3165 Pactific Highway San Diego, Galifornia Cornell Aeronautical Lab. ATTN: Librarian 4455 Genecee Street Buffalo 21, New York Emerson Electric Mg. Co. Station 62 8100 W. Florissant Ave. St. Louis 21, Missouri General Electric Company Advanced Electronics Center Ithaca, New York General Electric Company Research Laboratory I River Road Schenectady, New York General Electric Company ATTN: Director - Electronics Laboratory Electronics Park Syracuse, New York General Electric Company Light-Military Electronics Equip. Dept. French Road Utica, New York General Electric Company Microwave Laboratory 601 California Avenue Palo Alto, California Ceneral Mills Engineering Research and Development Dept. 2003 E. Hennepin Minnespolis, Minnesota General Precision Laboratories 63 Bedford Road Pleasantville, New York Gilfilian Brothers 1815 Venice Blvd. Los Angeles, California Goodyear Aircraft Corp. Akron 12, Ohio Goodyear Aircraft Corp. Litchfield Park, Arisona Haller-Raymond and Brown, Inc. 124 N. Atherton Street State College, Pa. Haseltine Corp. Haseltine Electronice Division 59-25 Little Neck Parkway Little Neck 62, New York Hughes Aircraft Company ATTN: Librarian Florence and Teale Streets Culver City, California The Johns Hopkins University Radiation Lab. 1315 St. Paul Street Baltimore 2, Md. Lockheed Aircraft Corp. ATTN: Mr. F.W. Husmann 131 North Ludlow Street Dayton 2, Ohio W. L. Maxson Corp. 460 W. 34th Street New York, N. Y. McDonnell Aircraft Corp. P.O. Box 516 St. Louis, Missouri The Martin Electronics Company Baltimore 3, Md. Mitre Corporation Library P.O. Box 208 Bedford, Mass. Motorola Corp 3102 North 56th Street Phoenix, Arisona North American Aviation Autometics Division Attn: Librarian 9150 E. Imperial Hwy Downey, California The Chio State University Research Foundation Antenna Laborstory Attn: Dr. T.E. Tice 1314 Kinnear Road Columbus 8, Ohio Philco Corp. Attn: Librarian 4700 Wissahickon Ave. Philadelphia 44, Pa. Radio Corporation of America Bidg. 108-1 Moorestown, N. J. Radio Corporation of America RCA Lab., Princeton, New Jersey Radio Corporation of America Missile Electronics and Controls Dept, Woburn Post Office Woburn, Mass. Rame-Wooldridge A Division of Thompson Rame Wooldridge Inc. 8433 Fallbrook Ave. Canoga Park, California Raytheon Manufacturing Co. Missils and Radar Div. Bedford, Mass Republic Aviation Attn: Eng. Library Farmingdale, Long Island New York Republic Aviation Corp. Guided Missiles Div. 233 Jericho Turnpike Minsola, New York Sanders Associates, Inc. Attn: Document Librarian 95 Canal Street Nashua, New Hampshire Sandia Corporation Sandia Base Albuquerque, New Mexico Space Electronics Corp. 930 Air Way Gleadale 1, California Sperry Gyroscope Co. Attn: Librarian Great Neck, Long Island New York Sperry Microwave Electronics Co. Attn: Mr. R.E. Lazarchik Clearwater, Florida Stanford Research Institute Division of Engineering Research Stanford, Gallfornia Stavid Engineering, Inc. U. S. Highway 22 Plainfield, New Jers, y Sylvania Electric Products, Inc. 500 Evelyn Avanue Mountain View, California Sylvania Electric Products, Inc. Waltham Lab, Library 100 First Avanue Waltham, Mass. Technical Research Group, Inc. 2 Aerial Way Syosset, N. Y. Tomas Instruments, Inc. ATTN: Apperatus Div. Library 6000 Lemon Avenue Dallas 9, Telas University of Ulinois Control Systems Lab. Urbana, Illinois University of Michigan Engineering Research Institute Atta: Director Electronic Defense Group Ann Arbor, Michigan University of Michigan Willow Run Laboratories Ypsilanti, Michigan Westinghouse Electric Corp. Air Arm Division Atta: Librarian Friendship International Airport Baltimore 3, Md. Wiley Electronics Co. 2045 West Cheryl Drive Phoenix, Arixona North American Aviation Missile Division 12214 Lakewood Blvd. Downey, California Giannini Controle Corp. Library 1600 Sc. Mountain Ave. Duarte, California GOVERNMENT AND MILITARY (continued) Space Technology Lab Inc. P. O. Box 95001 Los Angeles 45, Calif. Attn: Tech. Information Center Document Procurement | UNCLASSIFIED | | | UNCLASSIFIED | UNCLASSIFIED | | UNCLASSIFIED | |---|---|--|--------------
---|---|--| | AD Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusette AN EXPERIMENTAL INVESTICATION OF NOISE IN TUNNEL DIODES by Carl N. Berglund. July 1961. 32p. incl. illus. (Contract AF-33(616)-5489, Task 50688, MIT Project DSR 7848) Report ESL-R-115 | Noise measurements were made on one silicon and three germanium commercially available tunnel diodes over a bias range from zero voltage to a voltage slightly beyond the valp point, and at three temperatures-203 K, 290 K, and 373 K. The study was divided into two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise. | Frequency-dependent noise was measured in the range 1 kc to 500 kc, and was found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.4¢ to 1.2. This component of noise appears to be caused by | (over) | Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusetts AN EXPERIMENTAL INVESTIGATION OF NOISE IN TUNNEL DIODES by 'arl N' Berglund. July 1961. 32; incl. illus. (Cort.act AF-336161-5489, Task 50688, MIT Project ESR 7848) Report ESL-R-115 Unclassified report | Noise measurements were made on one silicon and three germanium commercially available tunnel diodes over a bias range from zero voltage to a voltage slightly beyond the valley point, and at three temperatures-203 K, 290 K, and 373 K. The study was divided into two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise. | Frequency-dependent noise was measured in the range 1 kc to 500 kc, and was found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.46 to 1.2. This component of noise appears to be caused by | | UNCLASSIFIED | | | UNCLASSIFIED | UNCLASSIFIED | | UNCLASSIFIED | | Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusetts AN EXPERIMENTAL INVESTIGATION OF NOISE IN TUNNEL DIODES by Carl N. Berglund. July 1961. 32p. incl. illus. (Contract AF-33(616)-5489, Task 50688, MIT Project DSR 7848) Report ESL-R-115 Unclassified report | Noise measurements were made on one silicon and three germanium commercially available tunnel diodes over a bias range from zero voltage to a voltage slightly beyond the valley point, and at three temperatures - 203 K, 297 K, and 373 K. The study was divided into two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise. | Frequency-dependent noise was measured in the range 1 kc to 500 kc, and was found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.46 to 1.2. This component of noise appears to be caused by | (over) | Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusetts AN EXPERIMENTAL INVESTIGATION OF NOISE INTUNNEI DIODES by Carl N. Berglund. July 1961. 32p. incl. illus. (Contract AF-33(616)-5489, Task 50688, MIT Project DSR 7848) Report ESL-R-115 | Noise measurements were made on one silicon and three germanium commercially available tunnel diedes over a biar range from zero voltage to a voltage slightly beyond the valley point, and at three temperatures - 203 K, 290 K, and 373 K. The atudy was divided inco two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise. | Frequency-dependent noise was measured in the range 1 kc to 500 kc, and was found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.46 to 1.2. This component of noise appears to be caused by | , . two or more separation components of the "excess current" present, as well as the normal diode comparent of current. For some tunnel diodes at the higher bias voltages, frequenc -dependent noise may be greater than the normal shot noise at frequencies as it..., a as 50 Mc. was found that the seggivalent shot-noise curren above the peak-po to the peak-point voltage to a tunnel didde is a proximated by the sum of the Zener currents. Regulvalent shot-noise current of a tunnel diode at voltages to voltage is given very closely by the observed direct current. To the peak-point voltage, the equivalent shot-noise current of proximated by the sun; of the magnitudes of the Esaki and two or more separate components of the Textess current! present, as well as the normal diode component of current. For some tunnel diodes at the higher bigs voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent notice was measured at 30 Mc at room temperature. It was found that the equivalent short-neits current of a tunnel diode at voltages above the peak-point refuse is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a tunnel diede at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a tunnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. | Exercise System Laboratory Correct Note and system Laboratory Correct System Laboratory Note and system Laboratory Correct Correct System Laboratory Cor | | ** | | | | |--
--|--|-----------------------|--|--------------| | Unclassified AD Electronic Systems Labbartory AD Electronic Systems Labbartory Nasashusetts AN EXPERINIZATION OF NOISE IN THINKE DIODES by Carry Session 1949 10-1. 325. incl. illus. (Contract AF-33(516)-5489, T. ix 52688. MIT Troject DSR 7848) Report ESL-R-15 Noise measurements were made on one silicon, and three germanium commercially swallable tun indicates Noise and three stage from zero voltage to a voltage in voltage in the parts, one concerned with frequency-dependent moise and three temperatured in the carge Erequency-dependent noise was measured in the carge In to parts, one concerned with frequency-dependent moise and the other with frequency-dependent noise and the other with frequency-dependent noise and the carge in the stage in the carge in the bias voltage for each sample. The observed noise at each sample. The observed noise and the component of noise appears to be caused by (NCLASSIFIED) (NOCLASSIFIED) (NOCLASSIFIED) AD AD AD AD AD AD AD AD AD | h Paris | Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusetts AN EXPERIBENTAL INVESTIGATION OF NOISE INTUNIEL DIODES by Carl N. Berglund. July 1961. 32p. incl. illus. (Contract AF-33(616)-5489, Task 50688, MIT Project DSR 7848) Report ESL-R-115. 50688, MIT Project DSR 7848) Report ESL-R-115. Three germanium commercially available tunnel diodes over a bias range from zero voltage to a voltage slightly beyond the valley point, and at three temperatures-203 K, 290 K, and 573 K. The study was divided into two parts, one concerned with frequency-dependent noise and the other with frequency-independent noise and the object with frequency-dependent noise ing bias voltage for each sample. The observed noise ing bias voltage for each sample. The observed noise at each sample at the fre- | UNCLASSIFIED | hno. Allo Allo Allo Allo Allo Allo Allo All | UNCLASSIFTED | | Electronic Systems Laboratory Electronic Systems Laboratory Lassachusetts institute of Technology Nasaschusetts institute of Technology AN EXPERIMENTAL INVESTIGATION OF NOISE IN TUNNEL DIODES By Carl N. Berg. AN EXPERIMENTAL INVESTIGATION OF NOISE IN TUNNEL DIODES By Carl N. Berg. TUNNEL DIODES By Carl N. Bergind. July 164. 356. incl. illus. Contract AF (5616-348). Task 56689. MIT Project DSR 708 Report ESL-R.15 Noise measurer. | | This component of noise appears to be caused by (over) | G SI AISO L. COLETE D | 1.2. This component of noise appears to be caused by (over) | UNCLASSIFIED | | Electronic Systems Laboratory Nassachusetts Institute on Technology Nassachusetts finitute Notes Description 1 (1972) Notes Description 1 (1972) Noise End Nassachusetts finitute on Technology Experishing for Technology Noise End Nassachusetts finitute on Technology Noise End Nasachusetts | _ | | | | | | Noise measurem so were made on one silicon and three german commercially available turnel diodes over a bis formarcially available turnel diodes over a bis fight from zero voltage to a vo | | Electronic Systems Laboratory Massachusetts Institute of Technology Cambridge 39, Massachusetts Cambridge 39, Massachusetts Cambridge 39, Massachusetts TUNNEL DIOUSE System INCESTIGATION TUNNEL DIOUSE by Carl N. Berg. July 1961. 32p. incl. illus. (Contract AF. 2016)-5489, Task 50688, MIT Project DSR 79 The Project DSR 79 Unclassified report | | AD Electronic Systems Labb. Ptory Massachusetts Institute on Technology Cambridge 39, Massachusetts AN EXPERIMENTED STORMS TOWN OF NOISE IN TURNEL DIODES by Car' N. Berglund. July 10'11. 32p. incl. illus. (Contract AF-33(616)-5489, T. R. 56k88. MIT Project DSR 7848) Report ESL-R-15 Unclassified report | UNCLASSIFIED | | Frequency-dependent noise was measured in the range I ke to 500 ke, and was found to increase with increasing bias found to increase with increasing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 0.46 to quency to some power x, where x ranged rou. 6.46 to i. 2. This component of noise appears to be caused by UNCLASSIFIED (over) | | Noise measurer of were made on one silicon and three german commercially available tunnel diodes over a bis singe from zero voltage to a voltage slightly beyond valley point, and at three temperatures. 203 | | Noise measurements were made on one silicon and three germanium commercially available tun if divers over a blas range from zero voltage to a voltage alleghigh beyond the valley point, and at three temperatures. 203 K, 230 K, and 372 K. The study was divit ed into two parts, one concerned with frequency-dependent noise and the other with frequency-independent rolls. | | | | The state of s | | | Frequency-dependent noise was measured in the cange I ke to 500 ke, and was found to increase with finerase ing bias voltage for each sample. The observed noise at each bias point varied nearly inversely as the frequency to some power x, where x ranged from 6 46 to 1.2. This component of noise appears to be caused by 1.2. | TWOLASSIFIED | two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a turnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esski and Zener currents. two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a tunnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mb. Frequency-independent noise was
measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a tunnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. two or more separate components of the "excess current" present, as well as the normal diode component of current. For some tunnel diodes at the higher bias voltages, frequency-dependent noise may be greater than the normal shot noise at frequencies as high as 50 Mc. Frequency-independent noise was measured at 30 Mc at room temperature. It was found that the equivalent shot-noise current of a tunnel diode at voltages above the peak-point voltage is given very closely by the observed direct current. From zero voltage to the peak-point voltage, the equivalent shot-noise current of a tunnel diode is approximated by the sum of the magnitudes of the Esaki and Zener currents. ### LIST OF REPORTS PUBLISHED ON THIS CONTRACT ; | REPORT NO. | ASTIA NO. | CLASSIFICATION | TITLE | AUT HOR(E) | DATE | |-------------------------------------|------------|----------------|---|------------------|----------------| | 7848-R-1 | AD 210 247 | Unclassified | A Transistor-Magnetic Pulse Generator for Radar-Modulator Applications | Kriaits, A. | /58 | | 7848-R-3 | AD 306 104 | Confidential | Radar System and Component Research
1958 Annual Report | Sulf : | | | 7848-R-3a | | Unclassified | Unclassified Radar System and
Component Research | Staff . | 11/ | | 7848-R-4 | AD 210 245 | Unclassified | Video-Frequency Noise Measurements
on Microwave Crystal Mixers | Newberg, L. 2. | 8/59. | | 7848-
7849-R-4 | AD 210 245 | Unclassified | Electrical Properties of Thin Film of Cadmium Sulfide | MacArtima | 11./53 | | 78 48-
7 849- R-7 | AD 217 730 | Unclassified | A Theory of Multiple-Scan
Surveillance Systems | Kinnedy, R. S. | 5/59 | | 7848-
7849-R-12 | AD 247 436 | Unclassified | Investigation of a Thin-Film
Thermal Transducer | Gattling, J. G. | 2/60 | | ESL-AR-104(1) | | Unclassified | Investigation of New Radar Components and Techniques1960 Annual Report (Vol. I) | eff | 9/53-
8/60 | | ESL-AR-104(2) | | Confidential | (Unclassified Title) Investigation of New Radar Components and Techniques1960 Annual Report (Vol. II) | S aff | 9/.9-
3/00 | | ESL- R-115 | | Unclassified | An Experimental Investigation of Noise in Tunnel Diodes | Fergiund, C. N. | 7/21 | | | | | • | | | | | | | TECHNICAL MEMORANDA | | I | | 7848-
7849-TM-1 | AD 210 244 | Unclassified | Theory of a Fast-Response Thin Film
Thermal Transducer | Clottling, J Ci. | 7,158 | | 7 848- TM-2 | AD 213 521 | Unclassified | High-Power Pulse Generation Using Semi-
conductors and Magnetic Cores | Lessiter, I. M. | ¥/ 59 i | | 7848-TM-3 | AD 218233 | Unclassified | Some Data on Video-Frequency Noise Temperatures of Balanced X-Band Crystal Mixers | Newberg, I. I. | !/ | | 7 848-
7849-TM-4 | AD 228 065 | Unclassified | Optical Data-Processing With Thin
Magnetic Film | Kleinrock, | 0 * | | 7848-TM-5 | AS 220717 | Unclassified | A Regulated Power Supply for Airborne Radar | Kapp, E. | ŤŹ | | 7848-TM-6 | AD 231 938 | Unclassified | Supplement to "Video-Frequency Noise Measurements on Microwave Crystal Mixers"Data for Germanium Crystals | Newberg, L. L. | 11, " | | 7 848-
7 849- TM-7 | AD 234 506 | Unclassified | Thin Film Conductivity Modulation by the Electrolysis of Glass Substrate | Advani, G | 2,1 | | 7 848-
7 849- FM-8 | AD 242 253 | Unclassified | A Study of the Enhancement of the Kerr Rotation | Cole, F. B. | 4/07 | | 7 848-
7 849- IM-9 | AD 247 433 | Unclassified | An Investigation of the Vacuum Evaporation
Techniques of Electroluminescent Phosphors | Tarjan, P. P. | 10/4 | | ESL_TM-100 | | Unclassified , | Tunnel Diode Circuits for Switching Thin Film Memories | Davis, P. C. | 1, | | ESL-TM-105 | AD 259 333 | Unclassified | A Method for Fabricating Thin Ferroelectric
Films of Barium Titanate | Green, J. P. | 2.54 | | ESL-TM-117 | | Unclassified | Measurements of Shot No in Tunnel Diedes at Low Forward Voitages | Berglund, C. N | >, , |